Covering rough sets based on neighborhoods: An approach without using neighborhoods
نویسنده
چکیده
Rough set theory, a mathematical tool to deal with inexact or uncertain knowledge in information systems, has originally described the indiscernibility of elements by equivalence relations. Covering rough sets are a natural extension of classical rough sets by relaxing the partitions arising from equivalence relations to coverings. Recently, some topological concepts such as neighborhood have been applied to covering rough sets. In this paper, we further investigate the covering rough sets based on neighborhoods by approximation operations. We show that the upper approximation based on neighborhoods can be defined equivalently without using neighborhoods. To analyze the coverings themselves, we introduce unary and composition operations on coverings. A notion of homomorphism is provided to relate two covering approximation spaces. We also examine the properties of approximations preserved by the operations and homomorphisms, respectively.
منابع مشابه
Condition for neighborhoods in covering based rough sets to form a partition
Neighborhood is an important concept in covering based rough sets. That under what condition neighborhoods form a partition is a meaningful issue induced by this concept. Many scholars have paid attention to this issue and presented some necessary and sufficient conditions. However, there exists one common trait among these conditions, that is they are established on the basis of all neighborho...
متن کاملApplications of repeat degree on coverings of neighborhoods
In covering based rough sets, the neighborhood of an element is the intersection of all the covering blocks containing the element. All the neighborhoods form a new covering called a covering of neighborhoods. In the course of studying under what condition a covering of neighborhoods is a partition, the concept of repeat degree is proposed, with the help of which the issue is addressed. This pa...
متن کاملLattice structures of fixed points of the lower approximations of two types of covering-based rough sets
Covering is a common type of data structure and covering-based rough set theory is an efficient tool to process this data. Lattice is an important algebraic structure and used extensively in investigating some types of generalized rough sets. In this paper, we propose two family of sets and study the conditions that these two sets become some lattice structures. These two sets are consisted by ...
متن کاملCharacterization of neighborhood operators for covering based rough sets, using duality and adjointness
Covering based Rough Sets are an important generalization of Rough Set Theory. Basically, they replace the partition generated from an equivalence relation by a covering. In this context many approximation operators can be defined [16, 26, 27, 28, 34]. In this paper we want to discover relationships among approximation operators defined from neighborhoods. We use the concepts of duality, adjoin...
متن کاملA Variable Precision Covering-Based Rough Set Model Based on Functions
Classical rough set theory is a technique of granular computing for handling the uncertainty, vagueness, and granularity in information systems. Covering-based rough sets are proposed to generalize this theory for dealing with covering data. By introducing a concept of misclassification rate functions, an extended variable precision covering-based rough set model is proposed in this paper. In a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Int. J. Approx. Reasoning
دوره 52 شماره
صفحات -
تاریخ انتشار 2011